M7.1 (5 points) Write out the following tensor equations in full. Show all appropriate steps.
(Note: these equations do not necessarily have any real meaning)
(a) $C_{m n}=R_{m n j k} \square_{\mathrm{k}} \mathrm{z}_{\mathrm{k}} \quad($ for $\mathrm{m}=1, \mathrm{n}=3)$
(b) $\mathrm{E}=1 / 2 \square_{\mathrm{TL}} \square_{\square \square}$
(c) $\mathrm{H}_{\mathrm{i}}=\mathrm{b}_{\mathrm{DC}} \mathrm{P}_{\square \mathrm{D}} \mathrm{n}_{\mathrm{i}}$
(d) $\square_{31}=\ell_{3 m^{\prime}} \ell_{1 n^{\prime}} \square_{m^{\prime} n^{\prime}}^{\prime}$
(e) $\mathrm{f}_{\mathrm{pq}}\left(\partial \mathrm{g}_{\mathrm{q}} / \partial \mathrm{t}\right)+\mathrm{x}_{\mathrm{p}}=0$

M7.2 (5 points) Write out the succinct tensor equation that describes the following notation. Clearly explain all steps in arriving at the equation.

$$
\left\{\begin{array}{l}
M_{1} \\
M_{2} \\
M_{3}
\end{array}\right\}=\left[\begin{array}{lll}
\square_{111} & \square_{221} & 2 \square_{121} \\
\square_{112} & \square_{222} & 2 \square_{122} \\
\square_{113} & \square_{223} & 2 \square_{123}
\end{array}\right]\left\{\begin{array}{c}
T_{11} \\
T_{22} \\
T_{12}
\end{array}\right\}
$$

M7.3 (10 points) A second axis system is defined by rotating the $x_{1}-x_{2}$ plane by an angle \square of -25° about the x_{3} axis. A position vector, \underline{r}, is described in the original axis system as (NOTE: The vector is unitless):

$$
\underline{\underline{r}}=4 \underline{\mathrm{i}}_{1}-3 \underline{\mathrm{i}}_{2}-5 \underline{\mathrm{i}}_{3}
$$

(a) Determine the expression for the vector in the rotated coordinate system.
(b) Prove, by some means, that these two expressions are equivalent.

